Coexistent Fluid-Phase Equilibria in Biomembranes with Bending Elasticity
نویسندگان
چکیده
The theory of fluid surfaces with elastic resistance to bending is applied to coexistent phase equilibria in biomembranes composed of lipid bilayers. A simplified version of the model is used to simulate the necking and budding of closed vesicles.
منابع مشابه
The stretching elasticity of biomembranes determines their line tension and bending rigidity.
In this work, some implications of a recent model for the mechanical behavior of biological membranes (Deseri et al. in Continuum Mech Thermodyn 20(5):255-273, 2008) are exploited by means of a prototypical one-dimensional problem. We show that the knowledge of the membrane stretching elasticity permits to establish a precise connection among surface tension, bending rigidities and line tension...
متن کاملShape analysis of giant vesicles with fluid phase coexistence by laser scanning microscopy to determine curvature, bending elasticity, and line tension.
Membrane shape parameters such as curvature, bending elasticity, and lateral tension, are relevant to the lateral organization and function of biomembranes, and may critically influence the formation of lateral clustering patterns observed in living cells. Fluorescence laser-scanning microscopy can be used to image vesicles and cell membranes, and from shape analysis of these images mechanical ...
متن کاملSurface Tension and Surface Energy of Curved Interfaces and Membranes
In this work we develop the basic idea that the mechanical properties of a curved Gibbsian dividing surface are characterized, not only by the surface tension, but also by surface moments. It is shown that an additional surface bending moment term is to be introduced in the interfacial balance of the force moments at a spherical dividing surface. The existence of surface bending moment leads to...
متن کاملFinite element approximation for the dynamics of fluidic two-phase biomembranes
Biomembranes and vesicles consisting of multiple phases can attain a multitude of shapes, undergoing complex shape transitions. We study a Cahn–Hilliard model on an evolving hypersurface coupled to Navier–Stokes equations on the surface and in the surrounding medium to model these phenomena. The evolution is driven by a curvature energy, modelling the elasticity of the membrane, and by a Cahn–H...
متن کاملLamellar gels and spontaneous vesicles in catanionic surfactant mixtures.
Caillé analysis of the small-angle X-ray line shape of the lamellar phase of 7:3 wt/wt cetyltrimethylammonium tosylate (CTAT)/sodium dodecylbenzene sulfonate (SDBS) bilayers shows that the bending elastic constant is kappa = (0.62 +/- 0.09)k(B)T. From this and previous results, the Gaussian curvature constant is kappa = (-0.9 +/- 0.2)k(B)T. For 13:7 wt/wt CTAT/SDBS bilayers, the measured bendin...
متن کامل